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Abstract
We discuss several aspects of multiparticle mixed-state entanglement and its
experimental detection. First we consider entanglement between two particles
which is robust against disposals of other particles. To completely detect
these kinds of entanglement, full knowledge of the multiparticle density
matrix (or of all reduced density matrices) is required. Then we review the
relation of the separability properties ofl-partite splittings of a stateρ to its
multipartite entanglement properties. We show that it suffices to determine the
diagonal matrix elements ofρ in a certain basis in order to detect multiparticle
entanglement properties ofρ. We apply these observations to analyse two
recent experiments, where multiparticle entangled states of 3 (4) particles were
produced. Finally, we focus on bound entangled states (non-separable, non-
distillable states) and show that they can be activated by joint actions of the
parties. We also provide several examples which show the activation of bound
entanglement with bound entanglement.

PACS numbers: 03.67.−a, 03.65.Ca, 03.65.Ta, 03.67.Hk

1. Introduction

Entanglement is at the heart of quantum information theory. In recent years, there has been
an ongoing effort to characterize entanglement quantitatively and qualitatively. While for
bipartite systems essential parts of this problem are solved, many questions remain still open
for multipartite systems. In this case, there exist several possible approaches to identify
different kinds of multiparticle entanglement (MPE), and many interesting phenomena related
to MPE have been discovered [1–6].

In this work, we review some possible approaches to identify different kinds of MPE and
discuss its experimental detection.

1.1. Bipartite entanglement, separability and distillability

Let us start with the simplest case of bipartite systems and review some basic concepts related
to bipartite entanglement. LetA andB be two spatially separated systems of dimensiondA
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(dB) respectively. A stateρ is said to be separable if it can be written as a convex combination
of product states, i.e.

ρ =
∑
i

pi |ai〉A〈ai | ⊗ |bi〉B〈bi |. (1)

In the case where this is not possible,ρ is said to be entangled. Note that separable states
ρ are states which can be prepared locally by the parties, i.e.ρ is only classically correlated.
As inseparable (entangled) states are very interesting, both from a fundamental and from a
practical point of view, one of the main problems in quantum information theory is the problem
of establishing whether a given stateρ is separable or not. We have that condition (1) is in
general very difficult to check, as there exist (in general) infinitely many ways to write a given
density operatorρ as a convex combination of (possible entangled) pure states. However,
the problem of separability has been extensively studied in recent years [7], and in the case
of two qubits (dA = dB = 2), necessary and sufficient conditions for separability have been
obtained [8, 9]. In particular, for two qubits one can use the partial transposition criterion [8,
9] which states that (i)ρ is separable iffρTA � 0 [9]. Here,TA denotes transposition inA in
a given orthonormal basisSA = {|k〉}dAk=1, andX � 0 means that all eigenvalues ofX are� 0.
For higher-dimensional systems (dA, dB � 2), positivity of the partial transposition is only a
necessary, but not sufficient condition for separability.

For inseparable (entangled) density operatorsρ, one may also ask whether the
entanglement contained inρ can be distilled. That is, whether out of (arbitrarily) many copies
of ρ, a maximally entangled state (MES) such as the singlet state|
−〉 = (|01〉 − |10〉)/√2
shared by the partiesA and B can be created by means of local operations and classical
communication. In the case where this is possible,ρ is said to be distillable. Again, for two
qubits it turns out that the partial transposition provides a necessary and sufficient condition
for distillability: (ii) ρ is distillable iff ρTA 
� 0 [10]. For higher-dimensional systems (dA,
dB > 2), non-positive partial transposition is a necessary, but not sufficient condition for
distillability.

The partial transposition criteria (i) and (ii) thus provide a necessary and sufficient
condition for separability and distillability for two qubit systems.

1.2. Multiparticle entanglement

The aim of this paper is to extend these ideas to multiparticle systems, in particular to study
separability and distillability properties of multiparticle systems. However, there are various
aspects of multiparticle entanglement. For example, there exist obviously many different kinds
of entanglement in a multiparticle system, as one may have bipartite entanglement shared by,
say, partiesA1 andA2 as well as bipartite entanglement shared by two other parties, sayA2
andA3. In addition, there exist trueN-partite entanglement, for example MES ofN particles
such as the Greenberger–Horne–Zeilinger (GHZ) state [11]

|GHZ〉 = 1√
2
(|0⊗N 〉 + |1⊗N 〉). (2)

Concerning for example the question of distillability, one may consider distillability of
bipartite entanglement between pairs of particles or of trueN-partite entanglement between
a group of particles. In both cases, one may either ignore the remaining particles or allow
them to assist the other parties in order to distil a MES. One may also consider partitions of
the system, i.e. allowing some of the parties to act together and perform joint operations, and
determine the distillability (and separability) properties with respect to this partition, which in
turn provide information about the entanglement properties of the whole system. Each of the
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situations just described is concerned with a different aspect of multiparticle entanglement,
and will be discussed in more detail in the following.

From an experimental point of view, it is of particular interest to detect whether aN-particle
state is distillable to a MES ofN-particles. We will provide a simple, sufficient criterion which
allows—without full knowledge of the density matrix—to detect trueN-qubit entanglement.
In addition, this criterion allows to detect different kinds of multiparticle entanglement as
well. We also observe that there exist more kinds of multipartite entanglement then the obvious
ones already mentioned previously (all possible combinations of maximally entangledl-partite
states for differentl). In particular, we consider bound entangled states, i.e. non-separable, non-
distillable states and show that they can be activated under certain circumstances. We provide
examples illustrating quite surprising effects related to bound entanglement and its activation.

This paper is organized as follows. We start in section 2 by discussing bipartite aspects
of MPE, that is entanglement which is robust against disposal of particles. We discuss
the necessary information which is required to detect these aspects of MPE. In section 3,
we choose a different approach and concentrate onl-partite aspects of MPE. Usingl-partite
splittings of the system, we show how to completely determine the separability and distillability
properties of a certain family of states, i.e. its MPE properties. Using these results, we
provide a simple (sufficient) criterion to (experimentally) detect different kinds of MPE. We
illustrate this method by applying it to two recent experiments, where MES of 3 (4) particles
respectively were created. Finally, in section 4 we focus on an interesting phenomenon related
to MPE, namely on bound entanglement and its activation. In particular, we show that bound
entanglement can sometimes be activated by joint actions of some of the parties or alternatively
with the help of a different kind of bound entanglement. We give several examples to illustrate
these effects.

2. Entanglement which is robust against disposal of particles

In this section, we concentrate on bipartite aspects of multipartite entanglement, in particular
on bipartite entanglement which is robust against disposal of particles. We considerN spatially
separated partiesA1, . . . , AN, each possessing a qubit.

We say that two particles are (bipartite) entangled if their reduced density operator1 is
non-separable, i.e. the two particles share entanglement, independently of what happens to the
remaining particles. When considering the reduced density operator of two parties, we deal
with the situation where the information about all remaining particles is not accessible (or
the remaining parties are not willing to cooperate). Such a definition is very suitable from a
practical point of view, as there are certain multipartite scenarios where one is interested in
entanglement properties of pairs of parties, which are independent of other parties. In addition,
in certain experiments one may be faced with such a situation, e.g. when one of the particles
escapes from a trap. The remaining particles should then be described by the reduced density
operator. Note that in this sense, the GHZ state (2) contains no (bipartite) entanglement at all,
as all reduced density operators are separable. However, the GHZ state can be regarded as
MES of N particles in several other senses [12].

2.1. Entanglement molecules

In [6], it was shown that there existN-particle states which are still entangled when tracing
out any (N − 2) particles, i.e. there are states where all particles are entangled with all other
1 Given anN-partite stateρ, the reduced density operatorρ12 of partiesA1 andA2 is defined asρ12≡ tr3, . . . , N (ρ).
The operatorρ12 is separable if it can be written as a convex combination of product states.
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particles. In addition, it was shown there that there existN-partite statesρ where one can
choose for each of theN(N − 1)/2 reduced density operatorsρkl independently whether it
should be separable or inseparable. This allows us to build general structures ofN-particle
states, which were called ‘entanglement molecules’ in [6].

The following family of N-qubit states includes all possible configurations of
‘entanglement molecules’ [6]. First we specify for each of the reduced density operators
ρkl whether it should be distillable or not2, i.e. whether entanglement between the partiesAk

andAl can be distilled—without the help of the remaining parties—or not. LetI = {k1l1, . . . ,
kMlM} be the set of all those pairs where distillation should be possible, i.e. forkl ∈ I, we have
thatρkl is distillable. We define the state

|
ij 〉 ≡ |
+〉ij ⊗ |0 . . .0〉rest (3)

that is, the particlesAi and Aj are in a MES, namely|
+〉 = 1/
√

2(|01〉 + |10〉), and the
remaining particles are disentangled from each other and fromAi Aj. The family of states

ρI = 1

M

∑
kl∈I

xkl|
kl〉〈
kl | (4)

has the desired properties, which can be checked [6] by calculating the reduced density
operatorsρkl and using the partial transposition criterion. We have thatM ≡ ∑

kl∈I xkl is a
normalization factor. The bipartite aspects of multipartite entanglement were also analysed in
[13].

2.2. Experimental detection

Given anN-qubit stateρ, how can we determine its (bipartite) entanglement properties? One
possibility is to completely determine theN-partite density matrix ofρ. Givenρ, one can easily
calculate all possible reduced density operatorsρkl and determine the separability properties
of eachρkl. Due to the fact that we deal with qubits, one can use the partial transposition
criterion (see section 1.1) to determine for each of the reduced density operatorsρkl whether
it is separable or distillable. In the case thatρkl is inseparable, a MES shared by the partiesAk

andAl can be distilled.
However, it is rather difficult to completely determine the density matrix ofN-qubit system,

which is required in the procedure described above. Alternatively, one can concentrate from
the very beginning on the properties of the reduced density operatorsρkl, i.e. ignoring the
remaining particles and just measuring the bipartite density operatorρkl. In this case, all
N(N − 1)/2 different reduced density operators have to be determined independently and can
then be analysed using the partial transposition criterion.

Still, it might be too demanding to completely determine the density matrix of a two qubit
system, which is necessary to completely determine the separability properties of this system.
However, in order todetect entanglement in a two-qubit system, it suffices to show that the
fidelity F, i.e. the overlap with an arbitrary MES, fulfilsF > 1/2. Note however that this is
a sufficient condition for inseparability (distillability), which is in general not necessary. So
one can alternatively measure the overlap of each of the reduced density operatorsρkl with a
MES. Observing that for a givenρkl, F > 1/2 implies that out ofρkl a MES shared amongAk

2 Note that the inseparability of a certain reduced density operatorρkl already implies that a MES—such as
|�+〉 = 1/

√
2(|00〉+ |11〉)—shared between partiesAk andAl can be distilled (when allowing for several copies of the

state), even without the help of the remaining parties. This is due to the fact that for two qubit systems, inseparability
is equivalent to distillability [10]. In fact, the remaining parties can by no means prevent partiesAk and Al from
distilling a MES.
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andAl can be distilled. However, when one findsF � 1/2, nothing can be concluded about
the separability properties ofρkl.

Establishing the (bipartite) entanglement properties of a stateρ is however not the only
possibility to determine the multipartite entanglement (MPE) properties ofρ. The bipartite
entanglement properties, i.e. the properties of the reduced density operatorsρkl, are only a
certain aspect of the MPE properties ofρ. There are other aspects of MPE and alternative
ways to detect the presence of MPE, which will be discussed in the next section.

3. l-partite aspects of multiparticle entanglement

In this section we first review the concepts ofl-partite splittings,l-separability and distillability.
These properties can be used to completely characterize the multiparticle entanglement
properties of an arbitrary mixed stateρ [14]. We then review the properties of a family
of N-qubit statesρN introduced in [2] and completely determine the entanglement properties
of this family. Finally we show that these results can be used to determine entanglement
properties of general statesρ without complete knowledge of the density matrix. In particular,
it suffices to determine the diagonal matrix elements ofρ in a certain basis in order to establish
sufficient conditions for the presence of multipartite entanglement. We provide a simple
prescription to experimentally detect different kinds of multipartite entanglement. We apply
the results to two recently performed experiments [15, 16] to illustrate the usefulness of our
method.

3.1. Bipartite and l-partite splittings

Let us denote byP the set of all possible bipartite splittings ofN parties into two groups. For
example, for three partiesP contains the splittings (A1A3)–(A2), (A2A3)–(A1), and (A3)–(A1A2).
We will denote these bipartite splittings byPk, wherek = k1k2 . . . kN − 1 is a chain ofN − 1
bits, such thatkn = 0,1 if thenth party belongs to the same group as the last party or not. For
example, for three parties the splittings (A1A3)–(A2), (A2A3)–(A1), and (A3)–(A1A2) will be
denoted byP01, P10, andP11, respectively. We will denote byA the side of the splitting to
which the partyN belongs and byB the other side. In a similar way, one can considerl-partite
splittingsSl, where the parties form exactlyl groups. In the following, when we consider
l-partite splittings, the parties in each of thel groups will be allowed to act together (i.e. to
perform joint operations).

3.2. l-separability and distillability

Here we review the notion of separability and distillability in the case of multiparticle systems.
We considerN parties, each holding a system with dimensiondi, i.e.H = C

d1 ⊗ . . .⊗C
dN . We

call ρ fully separable if it can be written as a convex combination of (unnormalized) product
states, i.e.

ρ =
∑
i

|ai〉party1〈ai | ⊗ |bi〉party2〈bi | ⊗ . . .⊗ |ni〉partyN 〈ni |. (5)

In the following, we will consider a system ofN qubits, each held by one of the partiesA1,
A2, . . . , AN. In this case,d1= d2= . . . dN = 2. A stateρ is calledk-separable with respect
to a specifick-partite splitting iff it is fully separable in the sense that we considerρ as a
k-party system, i.e. as a state inH = C

d1 ⊗ . . . ⊗ C
dk . In order to completely determine

the separability properties of a stateρ, one should determine the separability properties of
all possiblel-partite splittings for alll � N/2. Based on this information, one can establish
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an hierarchic classification of the entanglement properties ofρ (see [14] for details). It turns
out that the separability properties of the differentl-partite splittings for differentl are not
independent of each other, which strongly simplifies the classification and reduces the number
of possible classes. In some cases we will deal with in the following, it even suffices to
determine the biseparability properties of a state, i.e. to establish the separability properties of
all possible bipartite splittings. This is due to the fact that thel-separability properties in this
case are completely determined by the biseparability properties ofρ.

In a similar way, one can establish the distillability properties of a stateρ. Given a
bipartite splittingPk, a stateρ is called distillable with respect to the splittingPk, if—out of
N identical copies ofρ—the two groupsA andB (which correspond to the two groups of
the splitting) can create by means of local operations and classical communication a MES
such as|�+〉 = 1/

√
2(|00〉 + |11〉), shared amongA andB. Recall that the term ‘local’ in

this case refers to local operation with respect to the groupsA andB, but may involve joint
operation on the particles within one group. In the case of distillability, it is not necessary to
considerl-partite splitting and the possible creation ofl-party GHZ states, as the creation of
pairwise entanglement between any two out ofl parties is a necessary and sufficient condition
for the distillation of al-partite GHZ state shared among those parties [15]. However, one
may ask whether two subgroups—not containing all parties—are capable of distilling a MES
with the help of the remaining parties. For a certain family of states, we will give necessary
and sufficient conditions when this is possible.

3.3. Family of states ρN

Let us considerρN, the family ofN-qubit states introduced in [2]. We have thatρ ∈ ρN if it
can be written as

ρ =
∑
σ=±

λσ0 |
σ0 〉〈
σ0 | +
∑
k 
=0

λk(|
+
k 〉〈
+

k | + |
−
k 〉〈
−

k |) (6)

where

|
±
k 〉 ≡ 1√

2
(|k1k2 . . . kN−10〉 ± |k̄1k̄2 . . . k̄N−11〉) (7)

are GHZ-like states withk= k1k2 . . . kN−1being a chain ofN− 1 bits, and̄ki = 0,1 if ki = 1,0,
respectively. We have thatρN is parametrized by 2N−1 independent real numbers. The
labelling is chosen such that ≡ λ+

0 − λ−
0 � 0. As we will see below, both the separability

and distillability properties of the states belonging to this family are completely determined
by the coefficients

sk ≡
{

1 if λk <  /2
0 if λk �  /2.

(8)

Let us emphasize that the notation used for the states of this family parallels the one used to
denote the partitionsPk, i.e. there is a one-to-one correspondence betweenPk andsk. Note
that there are no restrictions on the values of these coefficients; that is, for any choice of{sk}
there always exists a stateρ ∈ ρN with these values. We will now summarize the properties
of states belonging to the family (6) [14, 4].

(i) Depolarization. An arbitrary stateρ can be depolarized to the standard form (6) by
a sequence ofN-local operations while keeping the values ofλ±

0 ≡ 〈
±
0 |ρ|
±

0 〉 and
2λj ≡ 〈
+

j |ρ|
+
j 〉 + 〈
−

j |ρ|
−
j 〉 unchanged [14].
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(ii) Separability. For any bipartite splittingPk ∈ P, andρ ∈ ρN we haveρTA � 0 ⇔
sk = 0 ⇔ ρ is separable with respect to this splitting3 [14]. More generally,ρ ∈ ρN

is l-separable with respect to a specificl-partite splittingSl iff all bipartite splittingsPk

which contain4 Sl are separable (havesk = 0).
(iii) Distillability. Let ρ ∈ ρN,C = {Ai1, . . . , AiM } andD = {Aj1, . . . , AjL} be two disjoint

groups ofM andL parties respectively, whereas the rest of the parties are separated. A
MES betweenC andD can be distilled iffρ is non-separable with respect to all those
bipartite splittingsPk in which the groupsC andD are located on different sides (i.e. all
correspondingsk = 1). It follows thatρ is distillable with respect to a bipartite splitting
Pk ⇔ sk = 1 [4].

Note that (ii) and (iii)completely determine the separability and distillability properties
of an arbitrary stateρ ∈ ρN and thus the multipartite entanglement properties of this state.
We also have that (iii) already implies complete knowledge about the distillability ofk-partite
GHZ states, as the creation of pairwise entanglement between any two out ofk parties is a
necessary and sufficient condition for the distillation of ak-partite GHZ state shared among
those parties [15].

3.4. Implications for experimental detection of multipartite entanglement

We have that (i)–(iii) together provide a simple criterion for the detection of multipartite
entanglement for arbitrary mixed statesρ. From (i) it follows that any stateρ is at least as
entangledas the depolarizedversion ˜ρ ∈ ρN of ρ. This is due to the fact that a sequence of local
operations may destroy some entanglement, but cannot create any new kind of entanglement
which was not present in the initial state. This already gives us a prescription to detect different
kinds of multipartite entanglement of an arbitrary stateρ:

• Determine the following diagonal matrix elements ofρ:

λ±
0 ≡ 〈
±

0 |ρ|
±
0 〉

2λj ≡ 〈
+
j |ρ|
+

j 〉 + 〈
−
j |ρ|
−

j 〉 (9)

= 〈j0|ρ|j0〉 + 〈j̄1|ρ|j̄1〉.
Note that determiningλ±

0 requires a measurement in an entangled basis (GHZ basis),
while determiningλj corresponds to a measurement in a product basis. Recall that
|j0〉 = |j1j2 . . . jN−10〉 and|j̄0〉 = |j̄1j̄2 . . . j̄N−11〉 (see (7)). Equivalently, it suffices to
determine alldiagonal matrix elements ofρ in the standard basis plus one off-diagonal
element, namely|0 . . .0〉〈1 . . .1|.

• Calculate = λ+
0 −λ−

0 = 2 Re(〈0 . . .0|ρ|1 . . .1〉) and determine the coefficientssk given
in (8). If at least onesk = 1, we have thatρ is entangled.

• Use (i)–(iii) to determine the (minimal) entanglement properties of the stateρ. Note that
obtainingsk = 0 for a certain bipartite splittingPk does not imply thatρ is separable with
respect to this splitting. It might well be thatρ is inseparable (entangled) with respect
to Pk, but the corresponding depolarized state ˜ρ is separable. However, obtainingsk = 1
ensures that a certain kind of entanglement is present in the stateρ—namely thatρ is
inseparable with respect to the bipartite splittingPk. In particular, one can distil a GHZ
state fromρ iff sk = 1 ∀k.

3 ρTA denotes the partial transposition with respect to the partiesA. For the definition of partial transposition in
multiparticle systems see [8, 14]. The relation between subsystemA andPk is given in section 3.1.
4 A l-partite splittingSl is contained in ak-partite splittingPk iff Pk can be obtained fromSl by joining some of the
parties ofSl.
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3.5. Application to recent experiments

Let us apply this method to two recent experiments performed by Sacketet al [15] and
Rauschenbeutelet al. [16].

In [15], the creation of an (mixed) entangled stateρ of four ions, whose overlap with the
GHZ state|
+

0 〉 is F = 0.57± 0.02, was reported. It was argued that it is sufficient to obtain
F > 1/2 in order to be sure that the state is 4-partite entangled. This sufficient criterion is
however—in some cases—much too demanding and can be relaxed using the results presented
in this work. Imagine for example that the 4-qubit stateρ is of the form

ρ(x) = x|
+
0〉〈
+

0 | +
1 − x

16
1l4 (10)

This is clearly a special case of the stateρ4 with λ−
0 = λj = 1−x

16 , λ
+
0 = x + 1−x

16 and thus
 = x. Using (ii) and (iii), we can state thatρ(x) is fully non-separable and distillable to a four
party GHZ state iffx > 1/9, which corresponds toF > 1/6 [15]. Note that the boundF >
1/2—which is independent of the number of partiesN—corresponds to a worst-case scenario,
where it is assumed thatλ+

0 = F and the remaining weight is distributed onλ−
0 and one

specificλk. In this case, we have forF> 1/2 that > 2λk ∀k. If the remaining weight (1−F)
is however distributed onλ−

0 and more than oneλk, it automatically follows that > 2λk ∀ k
is already fulfilled for allλ+

0 ≡ F > F0, whereF0< 1/2. The weakest bound on the fidelity
F can be obtained by assuming that the state ˜ρN is of the following form:λ+

0 = F, λ−
0 = 0

and 2λk = (1− F)/(2N − 2). This ensures that ˜ρN has > 2λk ∀k and is thus distillable to an
N-party GHZ state iffF > 1/(2N − 1). ForN = 4, we obtainF > 1/15. We thus have that
additional knowledge of the shape of the state may relax the necessary conditions to ensure
that a state is entangled.

Let us now focus on the specific experiment [15] and apply these observations.
Unfortunately, the published experimental data are not sufficient to determine all coefficients
λk. However, one can easily determine

λ±
0 = 1/2(〈0000|ρ|0000〉 + 〈1111|ρ|1111〉)

± Re(〈0000|ρ|1111〉) = 0.35± 0.215(±0.02), (11)

from which follows that = 0.43(±0.02). In addition, one can also bound the other
coefficientsλk and find5

0 � 2λk � 0.2(±0.04) iff k ∈ {001,010,100,111}
0 � 2λk � 0.1(±0.02) iff k ∈ {011,101,110}. (12)

We thus have that > 2λk ∀k as expected. Note however that a fidelityF < 1/2 would have
been sufficient to ensure that the produced state is truly 4-partite entangled. Assume, for

5 In [15], only the probabilitiespl to find l ions in state|0〉 and N − l ions in state|1〉 are given. Forl = 1,
there are four states which might contribute top1, namely |φ1

i
〉 ∈ {|0111〉, |1011〉, |1101〉, |1110〉}. From the

measured data we know thatp1= P1ρP1= tr(
∑
d1
ij

|φ1
i
〉〈φ1
j
|), whereP1 = ∑ |φ1

j
〉〈φ1
j
| and we assumed that

d1
ij are the (unknown) coefficients of the density matrixρ in the basis|φ1

i 〉. Similarly, for l = 3, the four states

|φ3
i
〉 ∈ {|0001〉, |0010〉, |0100〉, |1000〉} can contribute top3 and tr(

∑
d3
ij

|φ3
i
〉〈φ3
j
|) = p3. For l = 2, there are

six states which might contribute top2, namely|φ2
i
〉 ∈ {|0011〉, |0101〉, |0110〉, |1001〉, |1010〉, |1100〉} and again

tr(
∑
d3
ij

|φ3
i
〉〈φ3
j
|) = p3. Note that the coefficientsdl

ij
are not specified by the provided data, but the diagonal

coefficientsdl
ii

are bound from above bypl. We have e.g. that 2λ001 = d1
11+d3

22. Since we might get contributions to

λ001fromp1 andp3, we conclude that 0�2λ001�p1 + p3. A similar argument holds e.g. for 2λ110 = d2
66+d2

11, but in
this case we only get contributions fromp2. We thus conclude that 0�2λ110�p2. The same line of argument can be
used to obtain bounds for allλk. In the experiment, the values ofpj were determined to bep1= p2= p3= 0.10± 0.02.
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example, that white noise is added to the experimentally produced state, i.e. ˜ρ = xρ + (1 −
x)/161l4. Using the bounds onλk just derived, we find that ˜ρ remains truly 4-partite entangled
for x > 0.3521, which corresponds to a fidelity ofF > 0.3926, significantly below 1/2.

Our method should thus simplify the task of detecting an entangled state of a larger number
of particles (N > 4), as it relaxes the necessary conditions for the detection of trueN-partite
entanglement. Note that it would be highly desirable to measure all diagonal coefficients in
the standard basis independently rather than projections into subspacesPj with j particles in
|0〉 andN−j particles in |1〉 as done in [16]. Doing so, one could determine the coefficients
λk directly and would not have to use a ‘worst-case scenario’ in order to establish bounds on
λk as we did here (see footnote 5). In addition, different kinds of entanglement which do not
correspond toN-party GHZ entanglement can be detected as well. In the next section, we show
that states showing these different kinds of entanglement may also be interesting to produce,
as they provide examples of surprising effects such as the activation of bound entanglement.

One may also adopt this method to other experiments, such as the one performed by
Rauschenbeutelet al [16], where a maximally entangled state of three spin-1

2 systems
(two atoms plus one cavity mode) was created. Let us first adopt the notation used
in [16] to the one used throughout this paper:|+j 〉 = |1〉, |−j 〉 = −|0〉, where e.g.
|+1〉 = |e1〉, |+2〉 = (|g2〉 + |i2〉)/

√
2 and|+C〉 = |g3〉 (see equation (3) and below in [16]). In

addition, we make a basis change|0〉 → −|1〉 and|1〉 → |0〉 in party 3. It follows that the
longitudinal correlations given in figure 3 of [16] correspond to the diagonal matrix elements
of ρ in the basis (from left to right){|011〉, |010〉, |001〉, |000〉, |111〉, |110〉, |101〉, |100〉}.
From this we can determine

2λ01 = 0.14(±0.04)

2λ10 = 0.155(±0.04) (13)

2λ11 = 0.128(±0.04)

From the transverse correlations we find6

 = 2Re(〈000|ρ|111〉 = 2V⊥ = 0.28(±0.04). (14)

Thus we have that > 2λk ∀k and we can conclude that the experimentally detected stateρ

is in fact distillable to a 3-party GHZ state. Note that in [16], it was necessary to take known
detection errors into account in order to obtainF > 0.5. Here we can state that even without
taking these errors into account, the stateρ is true tripartite entangled, although its fidelity
F = 0.43< 1/2.

3.6. Bound entanglement and its activation

Let us now considerN spatially separated parties,A1, . . . , AN, who shareM identical copies
of anN-qubit stateρ, whereM can be as large as we wish. This ensures that the parties can
use distillation protocols [17] in order to obtain MES between some of them. In the case that
this is possible, we say that the stateρ is distillable (with respect to the specific parties which
obtain the MES). If no MES shared between any two of the parties can be distilled and in
addition the stateρ is not fully separable (i.e. entangled), we say thatρ is bound entangled
(BE).

3.7. Activating bound entanglement by joint actions

Given a bound entangled state (BES), in some cases it is possible to activate the bound
entanglement. We say that a BES can be activated if it becomes distillable once some of the
6 The quantityV⊥ measured in the experiment also depends on other off-diagonal elements.
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parties join and form groups to act together. Note that instead of allowing some parties to
join we could have allowed them to share some extra MES. In that case we would have the
same situation given the fact that separated parties sharing MES can perform any arbitrary
joint operation by simply teleporting [18] back and forth the states of their particles.

The first example of this kind was given in [2]. There it was shown that given a certain
BES shared by three parties, providing some extra bipartite entanglement betweenA1 andA2
enables the three parties to create a tripartiteGHZ state.

In [3], Smolin presented another example of this kind involving four parties. This example
has the additional feature that only a single copy of a BESρ is required in order to distill a
MES shared by two of the parties (sayA1 andA2) once the other two parties (sayA3 andA4)
are allowed to act together and perform joint operations.

Using states of the form (6), several examples showing the activation of different kinds
of BE by joint actions of some of the parties were provided in [4]. In addition, a systematic
method for the construction of different kinds of activatable BES was provided there. Let us
review some of the examples given in [4]:

Example 1. The stateρI becomes distillable iff the parties form two groups with exactlyj and
N−j members, respectively. Furthermore, it does not matter which of the parties join in each
group, but only the number of members. For example, ifN = 8 andj = 3 , we have thatρI is
distillable if exactly three and five parties join, but remains undistillable when the parties form
two groups with 1–7, 2–6, 4–4 members, or if they form more than two groups. In particular,
ρI is not distillable if the parties remain separated from each other, which corresponds to
having eight groups. We can take as stateρI one from the familyρN which hassk = 1 iff the
number of ones ink is j or (N−j) andsk = 0 otherwise (this means that all bipartite splittings
which contain exactlyj members in one group are distillable, and all others are separable).

Example 2. The stateρII becomes distillable iff the parties form two groups, where the first
group contains aspecific set ofL partiesA = {Ak1, . . . AkL}, and the second group contains
the remaining parties. For all other configurations in groupsρII remains undistillable. For
example, we have forN = 5 andA = {A1, A3, A5} thatρII is distillable iff the parties form two
groups, (A1A3A5)–(A2A4), and not distillable otherwise. We can takeρII ∈ ρN such thatsk = 1
only for one specificPk. For N = 5, choosings0101= 1 ensures thatρII is inseparable and
thus distillable with respect to the bipartite splitting (A1A3A5)–(A2A4) and separable (and thus
undistillable) otherwise.

Example 3. ρIII is a BES ofN = 4 parties for which, once the parties (A3A4) form a group, a
GHZ-like state can be distilled amongA1, A2, and the group (A3A4), whereas it is undistillable
whenever any other parties but (A3A4) are joint. We chooseρIII ∈ ρ4 such that it is inseparable
with respect to the bipartite splittings (A1A2)–(A3A4), (A1)–(A2A3A4) and (A2)–(A1A3A4) and
separable with respect to all other bipartite splittings.

The described activation effects can be understood using (ii) and (iii) of section 3.3,
together with the fact that when joining some of the parties, one may change the separability
properties of certain bipartite splittingsPk from separable to inseparable (see [4] for details).

We conclude that the experimental creation of non-maximally entangledN-partite states
(not allsk = 1) might be of interest as well, as those states can have quite surprising properties.
Note however that, in this case, it is essential that the produced states are of the form (6), which
can be accomplished by physically implementing the depolarization procedure described in
[14].
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3.8. Activating bound entanglement with bound entanglement

Let us now consider the situation where theN parties possess different kinds of BES,ρ1,
ρ2, . . . ρL, but this time remain spatially separated from each other. The parties again possess
several copies of each of the states, i.e.ρ

⊗Mi
i . By definition, it is clear thatρ⊗Mi

i is not distillable
for all i, i.e. the parties cannot create a MES if they have access to only one kind of BES.

However if the parties have access to all different kinds of BES, i.e they share the state

ρ′ = ⊗Li=1ρ
⊗Mi
i (15)

we will give examples where they can distil a MES between some of the parties or even a GHZ
state shared among all the parties. This effect, namely that the tensor product of two BES, is no
longer necessarily a BES, was discovered by Shoret al [5] and was termed ‘superactivation’.
We shall refer to this as activation of bound entanglement with bound entanglement.

Let us investigate the simplest example of a tripartite system,N = 3. We consider a state
ρ1 which is inseparable with respect to the bipartite splittingA–BC and separable with respect
to the splittingsB–AC andC–AB. As shown in [4], such a state is BE (a necessary condition
for distillation of a MES shared between any two of the three parties is that at least two of the
bipartite splittings have to be inseparable). Now consider statesρ2 andρ3 which are created
from the stateρ1 by cyclic permutations of the parties, i.e.ρ2 (ρ3) is inseparable with respect
to the splittingB–AC (C–AB) respectively. For a particular choice of the statesρ1, ρ2, ρ3,
the parties can create—once they have access to all three kinds of states—a state ˜ρ which is
inseparable with respect to all three bipartite splittings and which is in addition distillable to a
GHZ state. In fact, they just have to pick randomly one of the three statesρ1, ρ2, ρ3 (this can
be accomplished via classical communication only), i.e.

ρ̃ = 1

3
(ρ1 + ρ2 + ρ3). (16)

To be specific, choosingρ1 within the family of states (6),N = 3 with the following
coefficients

λ+
0 = 1

3
λ−

0 = λ2 = 0 λ1 = λ3 = 1

6
(17)

ensures (i) thatρ1 andρ2, ρ3 (created by cyclic permutations of the parties) are BE with
separability properties with respect to the bipartite splittings as announced above. (ii) ˜ρ

defined in (16) is again of the form (6) with coefficients

λ̃+
0 = 1

3
λ̃−

0 = 0 λ̃1 = λ̃2 = λ̃3 = 1

9
(18)

and is inseparable with respect to all bipartite splittings (since > 2λk) and hence distillable
to a GHZ state.

It is now straightforward to extend these ideas to more parties and to a more general setup.
Therefore we consider a subfamily ofN-qubit states of the form (6). We denote byS all those
bipartite splittingsPk for which the stateρ is inseparable (the correspondingsk = 1). For all
other bipartite splittingsPk /∈ S, ρ is separable (the correspondingsk = 0). Let the number of
separable bipartite splittings bes > 0. We define ≡ 1/(s + 1). The subfamily is defined by



6848 W Dür and J I Cirac

the following choice of parameters:

λ+
0 =  λ−

0 = 0;
λk = 0 iff Pk ∈ S (19)

λk =  

2
iff Pk /∈ S.

In general, we can announce the following.

Theorem 1. Given L different kinds of BES ρ1, . . . , ρL of the form (19), where Sj denotes all
bipartite splittings with respect to which ρj is inseparable, one can create a state ρ̃ which is
inseparable with respect to all those bipartite splittings where at least one of the states ρj was
inseparable, i.e. S̃ = ∪Sj .

Proof. We define

ρ̃ = 1

L

L∑
j=1

ρj , (20)

i.e. we pick randomly one of the statesρj (which can be accomplished by classical commu-
nication) and show that ˜ρ has the desired properties. We have that ˜ρ is again of the form
(6) and the coefficients̃λk are given by the average of the coefficientsλk,j of the statesρj.
We have to show that (i)̃ > 2λ̃k iff Pk ∈ S̃ ≡ ∪Sj and (ii)  ̃ � 2λ̃k iff Pk /∈ S̃. We
have that ̃ = 1/L

∑L
j=1 j . In case (i), we have that at least one of the statesρj is in-

separable with respect to the splittingPk. We assume without loss of generality that it is
only one, namelyρ1, and thusλk,1= 0 (the argument is exactly the same if more than one of
the statesρj are inseparable with respect toPk). In this case we obtain for the correspond-
ing λ̃k = 1/L

∑L
j=2 j/2. Note that the sum runs fromj = 2 to L, which ensures that (i)

is fulfilled—since( ̃ − 2λ̃k) =  1/L > 0. In the case of (ii), i.e.Pk /∈ Sj ∀j , we find
λ̃ = 1/L

∑L
j=1 j/2 and (ii) is fulfilled, which finishes the proof of our statement. �

Given this theorem, it is now very easy to construct several examples which show the
activation of bound entanglement with bound entanglement.

Example 1. We considerN parties and assume thatN is even. We haveN/2 different BE
states{ρk}, k = 1, 2,. . . , N/2. If the parties have access to any (N/2− 1) (or fewer) different
kinds of BE statesρk, they cannot distil any entanglement. However, once the parties have
access to all kinds of BE statesρk, they can create a state ˜ρ which is inseparable with respect
to all bipartite splittings and thus distillable to anN-party GHZ state. The following choice
of states has the announced properties: the stateρk is of the form (19) and is inseparable with
respect to all bipartite splittings which contain exactlyk parties on one side andN−k parties
on the other side and separable with respect to all other bipartite splittings. This ensures that
all stateρk are BE [4] and—according to theorem 1—the parties can create a state ˜ρ which is
distillable to a GHZ state once they have access to allN/2 different statesρk. If the access is
limited to (N/2− 1) or fewer different kinds of BE statesρk, one can easily check using (iii)
of section 3.1 that no entanglement can be distilled.

Example 2. In this example, we considerN different BE states{ρl}, l = 1, 2,. . . , N. Here,
the stateρN serves as a ‘key-state’, as, on one hand, access toρN together with access to the
stateρl enables the partiesAl andAN to distil a MES. On the other hand, access to all statesρl

exceptρN does not allow the parties to distil any entanglement at all. If in addition alsoρN
is accessible, a GHZ state shared by all the parties can be distilled (as partyAN can create a
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MES shared with any partyAl). Such a situation can be established by the following choice of
states: forl 
= N , the stateρl is of the form (19) and is inseparable with respect to all bipartite
splittings which have partiesAl andAN on different sides, except the splittingsAl–rest and
AN–rest which as well as all the other splittings are separable. The stateρN is also of the form
(19) and is inseparable with respect to all splittings where exactly one particle is on one side
andN − 1 particles are on the other side. All statesρl are BE, which can be checked using
(ii) and (iii) of section 3.3. Applying theorem 1, it is easy to observe the described activation
effect.

Note that the activation of BE by joint actions may be combined with the activation of BE
with BE. This opens a huge variety of different examples, which can all be constructed using
the results of [4] together with theorem 1 and states of the form (19).

4. Summary

We discussed several aspects of multipartite entanglement and its experimental detection.
First we focused on bipartite aspects of MPE, which can be determined by investigating
the bipartite reduced density operators of the multipartite systems. We then usedl-partite
splittings to establish thel-separability and distillability properties of a multipartite density
operatorρ. For a certain family of states, we completely determined the separability and
distillability properties using bipartite splittings only. Using this, we provided a simple
method to determine whether a mixed stateρ is multipartite entangled, and in addition to
detect which kind of entanglement is present. We illustrated this method by revisiting two
recent experiments. Finally, we focused on bound entangled states and the activation of BE.
We showed that BE can be activated by joint actions of the parties or with the help of a different
kind of BE itself.
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